秒懂帮

位置:首页 > 学前教育 > 

微积分基本定理

微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿-莱布尼茨公式的内容是一个连续函数在区间[a,b]上的定积分等于它的任意一个原函数在区间[a,b]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。

微积分基本定理

牛顿-莱布尼茨公式给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。

1670年,英国数学家伊萨克·巴罗在他的著作《几何学讲义》中以几何形式表达了切线问题是面积问题的逆命题,这实际是牛顿-莱布尼茨公式的几何表述。

1666年10月,牛顿在它的第一篇微积分论文《流数简论》中解决了如何根据物体的速度求解物体的位移这一问题,并讨论了如何根据这种运算求解曲线围成的面积,首次提出了微积分基本定理。



微积分四大基本定理是什么?

微积分的基本公式共有四大公式:

1、牛顿-莱布尼茨公式,又称为微积分基本公式。

2、格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分。

3、高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分。

4、斯托克斯公式,与旋度有关。

积分基本公式

1、∫0dx=c

2、∫x^udx=(x^u+1)/(u+1)+c

3、∫1/xdx=ln|x|+c

4、∫a^xdx=(a^x)/lna+c

5、∫e^xdx=e^x+c

6、∫sinxdx=-cosx+c

7、∫cosxdx=sinx+c

8、∫1/(cosx)^2dx=tanx+c

9、∫1/(sinx)^2dx=-cotx+c

微积分基本定理

微积分基本定理的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。

微积分基本定理的定义

牛顿-莱布尼茨公式(Newton-Leibnizformula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。

它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可以计算曲线的弧长,平面曲线围成的面积以及空间曲面围成的立体体积,这在实际问题中有广泛的应用,例如计算坝体的填筑方量。

什么是微积分基本定理

微积分基本定理,一般指的是,定积分计算的牛顿-莱布尼兹公式,

由该公式可知,计算定积分,只要计算出被积函数的原函数,代入区间端点值相减,即可得出定积分值。而原函数的计算,与微分导数密切相关,所以称该公式为微积分基本定理

什么是微积分基本定理?

这个定理的推导比较复杂,牵扯到积分上限函数:Φ(x) = ∫f(t)dt(上限为自变量x,下限为常数a)。以下用∫f(x)dx表示从a到b的定积分。

首先需要证明,若函数f(x)在[a,b]内可积分,则Φ(x)在此区间内为一连续函数。

证明:给x一任意增量Δx,当x+Δx在区间[a,b]内时,可以得到

Φ(x+Δx) = ∫f(t)dt = ∫f(t)dt + ∫f(t)dt

= Φ(x) + ∫f(t)dt

Φ(x+Δx) - Φ(x) = ∫f(t)dt

应用积分中值定理,可以得到

Φ(x+Δx) - Φ(x) = μΔx

其中m0,即

lim Φ(x+Δx) - Φ(x) = 0(当Δx->0)

因此Φ(x)为连续函数

其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为

Φ'(x) = f(x)

证明:由以上结论可以得到,对于任意的ε>0,总存在一个δ>0,使|Δx|

标签:微积分 定理